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sich aus (75)

M, 1
6,=22 (1+ 7v12). (78)
Denselben Wert findet man — wie es sein mufl —,

wenn man die Bahn eines Probeteilchens in einem
ScawarzscuiLp-Feld, das der Koordinatenbedingung

D. GEISSLER

(1) gehorcht, in erster Naherung berechnet. Fiir
vy=1 folgt aus (78) der bekannte Wert fir die
Lichtablenkung:

O, =4 M,L. (79)

Ich bin Herrn Prof. Pararerrov fiir die Anregung zu
diesen Untersuchungen und fiir viele wertvolle Diskus-
sionen zu groBem Dank verpflichtet.

Zur Gravitationsstrahlung nach Ber’

Von D. GEIssLER

Aus dem Theoretisch-Physikalischen Institut der Universitdt Leipzig
(Z. Naturforschg. 14 a, 696—698 [1959] ; eingegangen am 21. April 1959)

Die Ergebnisse von BeL ! werden auf das Gravitationsstrahlungsfeld eines zeitweise nichtstationa-

ren Systems angewendet.

Die Schwierigkeiten, die das Problem der Gravita-
tionsstrahlung in der allgemeinen Relativitatstheorie
bietet, rithren bekanntlich vor allem davon her, daf}
man bei der Formulierung eines differentiellen Er-
haltungssatzes fiir Energie und Impuls eines Sy-
stems, das allgemein aus Materie und zugehérigem
Gravitationsfeld besteht. einen Pseudotensor einfiih-
ren muf. eine GroBe also. die sich nur bei linearen,
nicht aber bei allgemeineren Koordinatentransfor-
mationen wie ein Tensor verhalt. Wegen dieser man-
gelnden Kovarianz des Pseudotensors t,” der Ener-
gie-Impuls-Dichte des Gravitationsfeldes ist es oft
nur schwer moglich, die physikalische Realitat der
damit erhaltenen Ergebnisse zu erkennen, z. B. also
festzustellen, ob eine in einem bestimmten Koordi-
natensystem nicht verschwindende Stromung von
Gravitationsenergie in einem anderen Koordinaten-
system nicht doch zu Null wird.

Einen Ausweg aus diesen Schwierigkeiten hat nun
kiirzlich BerL! versucht, indem er einen (echten)
Tensor vierter Stufe angibt, der bemerkenswerte
Analogien zum Energie-Impuls-Tensor des MaxweLL-
Feldes aufweist und mit dessen Hilfe ein ,,Gravita-
tionsstrahlungszustand® definiert wird.

Andererseits konnte vor kurzem gezeigt werden 2,
dal} die von einem zeitweilig nichtstationdren System
emittierte Gravitationsstrahlung eine nicht verschwin-
dende Gesamtenergie besitzt, die sich nicht durch
Koordinatentransformationen zu Null machen lafit.

1 L.Ber, C. R. Acad. Sci., Paris 247, 1094 [1958]; 246,
3015 [1958].

2 D. GeissLer, A. Pararetrou u. H. TreEDER, Ann. Phys., Lpz.
(7) 2, 344 [1959].

Obwohl hierbei die Gesamtenergie in der iblichen
Weise. d. h. unter Verwendung des Pseudotensors t.”
definiert wird, ist das Ergebnis kovariant, was mit
Hilfe der von WevL? angegebenen integralen Form
des allgemein-relativistischen Energie-Impuls-Satzes
erreicht wird.

Es wird daher von Interesse sein, den Tensor von
Ber fiir das Strahlungsfeld eines wahrend einer
endlichen Zeit nichtstationdren Systems explizit aus-
zurechnen und auf seinen physikalischen Gehalt zu
untersuchen. Das soll im folgenden getan werden.

Der ,Energie-Impuls“-Tensor von Ber ist defi-
niert durch*

Taﬂuv =A 8ap uv — Maﬂ‘ur (1)
mit der Invarianten
A= ; RI/?‘LW Raﬁur (2)
und dem Tensor
juaﬁlw = Rgaﬁu R/_.ﬂav + Rgaav Rgﬁay . (3)

Dabei ist Rag.r der Riemanssche Kriimmungstensor.

Wir betrachten nun ein makroskopisches System,
das (dauernd) in der Nihe des Koordinaten-
ursprungs lokalisiert ist und sich zu den Zeiten
t<0 sowie t>T (T endlich) in einem stationdren
Zustand befindet, im Zeitintervall 0 <t < T da-
gegen Gravitationsstrahlung aussendet. Das von die-
sem System erzeugte Gravitationsfeld? hangt fiir

3 H. Wevr, Raum—Zeit— Materie, Springer-Verlag, Berlin
1923, §§ 37, 38.

g f ... =0,1,23; i,jk...=1,23.
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ZUR GRAVITATIONSSTRAHLUNG NACH Brr

alle Zeiten ¢ > T nur in einem Gebiet von der Form
einer Kugelschale S der Dicke ¢7, deren Radius
sich nach Ergebnissen von Licunerowrcz 3 mit Licht-
geschwindigkeit ausdehnt, von der Zeit ab, wahrend
es innerhalb und auflerhalb der Kugelschale statio-
nir ist. Das in S lokalisierte Strahlungsfeld ist fir
Zeiten t> T sicher schwach, da dann die Entfer-
nung r eines beliebigen Punktes in S vom System
(im Ursprung) sehr grofl gegen dessen rdaumliche
Ausdehnung ist.

Unter diesen Umstdnden haben die Feldgrofen
g* des Strahlungsfeldes in erster Naherung in 1/r
die von Fock ¢ angegebene Form:

g00=1+ 4G6M +&Dr$ )
cr et ok
; 2G ni
gOlz —‘Cz—’_D”,Ora (4)
< - 2G ;i
ng — _ ik 4 ;Trle: 00>

Dabei bedeutet G die Newronsche Gravitationskon-
stante,

M=[odV (5)
die Gesamtmasse und
D”ED”(r):f@x’xst, t=2—r (6)

die retardierten Tragheitsmomente der betrachteten

Massenverteilung. Die Integrale in (5) und (6)

sind iiber die Hyperebene z° = ¢ ¢ = const zu nehmen.
Wir definieren nun einen Nullvektor ?

n* = {n% ni} = {1, fi} ,
Z
Ng= {ﬂo, ni} = {15 - I_l} )
T
und weiterhin die Groflen
Np= —np03+ny0n (8)

nelNp=0. (9)

Aus (6) ergibt sich dann wegen (7) fiir die Ablei-
tungen der D’ die Beziehung

nan®*=0 l (7)

mit der Eigenschaft

D’ ag=nang D™, (10)

5 A. Licaxerowicz, Théories Relativistes de la Gravitation et
de I’Electromagnétisme, Masson & Cie., Paris 1955, Kapi-
tel 2 u. 3.

6 V. A.Fock, Rev. Mod. Phys. 29, 325 [1957]; vgl. auch
D. GerssLer, Z. Naturforschg. 14a, 689 [1959], voran-
stehende Arbeit. Das Feld (4) erfiillt die Koordinaten-
bedingung g« ,=0.
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wobei die Punkte Ableitungen nach 7 (oder z°) be-
deuten. Damit und mit (8) bekommen wir aus (4):

ko =gw—nw=KN.N,D™ B> (11)

mit der Abkiirzung K=K(r) = iz‘i . (12)

Die GroBen K, N, und B* sind in dem Sinne als
konstant zu betrachten, als ihre Ableitungen nach z¢
entweder verschwinden oder zu Termen hoherer
Ordnung in 1/r fiithren. Mit Hilfe von (10) erhal-
ten wir daher aus (11)

k'uv,ga=KnQnaN:N:an,
an Eb’ﬂln

(13)
(14)

wobei noch

gesetzt worden ist.
Der Riemannsche Kriimmungstensor lautet in er-
ster Naherung

Raﬁ,uv = %(ha,u,ﬂv + }lﬂv,ay = hav,ﬂy — hﬂ‘u,av) ’ (15)
hgu = 8oo— Moo= (% Moo Nuv — Nou 7]ov) k. (16)

Man rechnet leicht nach, daf} Rap. wegen (7), (9)

und (13) in unserem Fall folgende Eigenschaften
hat:

n* Raﬂlur =0 5 (17)

Ta Rﬂ){uv +ng Rya;w +ny Raﬂ,uv =0. (18)

Daher sollte nach BeL ! der durch (1) bis (3) defi-

nierte Tensor Taguy die Form

Taﬂyv = —40% Nangnuny

(19)
haben.

Um Tapur explizit zu berechnen, brauchen wir zu-
néchst die Invariante 4, Gl. (2). Fir sie gilt nach
Lanczos ® (unter der Voraussetzung Ras = const- gap)
die Beziehung

R:W-y Regiv=2A4 guv « (20)

Wenn nun (17) mit einem beliebigen Nullvektor n?
(bei dem nicht sdmtliche Komponenten verschwin-
den) erfillt ist, folgt aus (20) durch Multiplikation
mit n*:

A=0. (21)
Fir den zweiten Term in der Definition (1) von

Tapur erhalt man aus (3), (15), (16), (13) und (9)

7 na= ist zundchst ein Nullvektor beziiglich Mixkowsxkischer
Metrik: ds*=7,, dz¢ der (noo=1, 70i=0, nir=—0ix).
Da aber n= bei den g#» stets nur in Termen o< r—! auftritt
und wir Terme zweiter und hoherer Ordnung in 1/r bei
den Q¥ vernachldssigen, diirfen wir in unserer ersten
Niaherung n2 als Nullvektor der allgemeinen Metrik
ds*=g,, dz« dzv auffassen.

8 C. Lanczos, Ann. Math. 39, 842 [1938].
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nach einiger Rechnung

Mapr =35 K2Hnangnun,, (22)
H=F’s Frs_%(Frr)z - n, ng Frm psm (23)
L Frs fmm i % (nr ns Frs)2 .

Fir Tup.r folgt dann aus (1), (21) und (22)
Tazﬂmv =—-1 K2 H NangnNuny. (24)
Man iiberzeugt sich leicht, dal H im Spezialfall
ny=1, ny=ny3=0 positiv (oder Null) ist. Wegen

der Invarianz von H gegen rdumliche Drehungen
gilt daher allgemein

H=20. (25)
so daBl Tag.r in der Tat die Form (19) mit
g Lage 1 62
0_8KH—26“2H (26)

besitzt.
Mit Hilfe eines beliebigen zeitartigen Einheits-
vektors u? (u, u?=1) werden der Vektor

PO(u) = (6: — Ug u:x) TaB‘uv uﬂ u*u’ (27)
und der Skalar
V(u) == =5 % Taﬂ_uv u® uﬂ u“u z 0 (28)

definiert. Nach den Ergebnissen von BeL bestehen nun
formale Analogien zwischen P; und dem Poy~TING-
Vektor sowie zwischen /' und der Energiedichte des
MaxweLL-Feldes. Insbesondere wird nach BEeL ein
(lokaler) ,Gravitationsstrahlungszustand“ durch
P, # 0 charakterisiert.

Wenden wir das nun auf das von uns betrachtete
Feld an, und zwar — der Ubersichtlichkeit halber —
fir =1, u'=0, so wird nach (27), (24) und
(12)

P0=0, Pi:Tio()O:—if;Hni*O. (29)

Unser Feld gehort daher zu einem Strahlungszustand
im Sinne der Definition von BEL.

Um P; als wirkliche Energiestromdichte auffassen
zu konnen, miifite man einen konstanten Faktor a

der Dimension g-cm*-sec ™ ? einfiithren:

pi=aP; [ =Energiestromdichte].

Damit ergabe sich fiir die Energie d/, die pro sec

9 A. Ewstey, S.B. Preu8. Akad. Wiss., Berlin 1918, S. 154;
L. Laxpav u. E. Lirscurrz, The Classical Theory of Fields,
Addison-Wesley Press, Inc., Cambridge (Mass.) 1951, Ka-
pitel 11, § 12. Bei Lanpav-Lirscurrz ist Drs nicht wie hier
[GL. (6)], sondern durch Drs= [ 0(3 27 25 —J7s gm 2m) dV
definiert.

10 Prs ist ja im wesentlichen das Quadrupolmoment der Mas-
senverteilung.
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durch ein in der Richtung n, gelegenes Flichen-
element df = r*> dow hindurchstromt, der Wert

2G>
d/ = 7aHdm (30)

_ ?sz a [brs Dﬂrs _ %(Drr) 2_9 ny ng Drm DSIIL

- .Drs Dmm =8 %(nr ng D'rs) 2] dw

und fiir die gesamte pro sec abgestrahlte Energie
dE/dt bekime man daraus durch Integration iiber
den vollen Raumwinkel:

L awa ‘; (3D D5 D7 D).
Die Formeln (30) und (31) sehen ganz dhnlich aus
wie diejenigen, die man erhilt, wenn man die ent-
sprechenden Grofen auf die iibliche Art, d.h. mit
Hilfe des Pseudotensors t.’, berechnet? ® unter-
scheiden sich aber in zwei wesentlichen Punkten:

1. Der konstante Faktor ist anders. Wahrend sich
bei der Rechnung mit t,” zwanglos die richtige Di-
mension fiir d/ und dE/d¢ ergibt, tritt in (30) und
(31) der ad hoc eingefiihrte Dimensionsfaktor a
auf. Dieser 1afit sich durch keine Kombination der
beiden Fundamentalkonstanten G und ¢ allein dar-
stellen.

2. Bei der Rechnung mit t.” treten dritte, in (30)
und (31) dagegen vierte zeitliche Ableitungen der
D™ auf. Nun charakterisieren die dritten Ableitun-
gen des Quadrupolmoments ! — wie uns vom elek-
tromagnetischen Feld her vertraut ist — die Quadru-
polstrahlung; fiir die vierten Ableitungen der D*
bietet sich dagegen keine einfache physikalische
Deutung an.

Eine weitere Schwierigkeit fiir eine direkte Inter-
pretation der Ergebnisse von BeL besteht darin, dal3
der Tensor Tasw von vierter Stufe ist, wahrend
man sonst nur Energie-Impuls-Tensoren zweiter
Stufe kennt.

Zusammenfassend 1dft sich sagen: Die von BeL
definierten Grollen Tapur, P, und V, die den groBen
Vorteil der Kovarianz besitzen, zeigen sehr interes-
sante Analogien zum Energie-Impuls-Tensor, zum
Poynting-Vektor bzw. zur Energiedichte des Max-
weLL-Feldes. Die Anwendung der Ergebnisse von
BeL auf den Fall des Strahlungsfeldes eines zeit-
weilig nichtstationdren Systems fiihrt indessen zu
Schwierigkeiten bei der physikalischen Deutung und
zeigt die formale Natur dieser Analogien.

(31)

Ich danke Herrn Professor Paparerrou fiir die An-
regung zu dieser Arbeit.



