
sich aus (75) 

0 1 = 2 f ( l + A ) . (78) 

Denselben Wert findet man — wie es sein muß —, 
wenn man die Bahn eines Probeteilchens in einem 
ScHWARzscHiLD -Fe ld , d a s d e r K o o r d i n a t e n b e d i n g u n g 

(1) gehorcht, in erster Näherung berechnet. Für 
vx = 1 folgt aus (78) der bekannte Wert für die 
Lichtablenkung: 

<91 = 4 M 2 / l . (79) 

Ich bin Herrn Prof. PAPAPETROU für die Anregung zu 
diesen Untersuchungen und für viele wertvolle Diskus-
sionen zu großem Dank verpflichtet. 

Zur Gravitationsstrahlung nach BEL1 

V o n D . GEISSLER 
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(Z. Naturforschg. 14 a, 696—698 [1959] ; eingegangen am 21. April 1959) 

Die Ergebnisse von BEL 1 werden auf das Gravitationsstrahlungsfeld eines zeitweise nichtstationä-
ren Systems angewendet . 

Die Schwierigkeiten, die das Problem der Gravita-
tionsstrahlung in der allgemeinen Belativitätstheorie 
bietet, rühren bekanntlich vor allem davon her, daß 
man bei der Formulierung eines differentiellen Er-
haltungssatzes für Energie und Impuls eines Sy-
stems, das allgemein aus Materie und zugehörigem 
Gravitationsfeld besteht, einen Pseudotensor einfüh-
ren muß. eine Größe also, die sich nur bei linearen, 
nicht aber bei allgemeineren Koordinatentransfor-
mationen wie ein Tensor verhält. Wegen dieser man-
gelnden Kovarianz des Pseudotensors t,/ der Ener-
gie-Impuls-Dichte des Gravitationsfeldes ist es oft 
nur schwer möglich, die physikalische Realität der 
damit erhaltenen Ergebnisse zu erkennen, z. B. also 
festzustellen, ob eine in einem bestimmten Koordi-
natensystem nicht verschwindende Strömung von 
Gravitationsenergie in einem anderen Koordinaten-
system nicht doch zu Null wird. 

Einen Ausweg aus diesen Schwierigkeiten hat nun 
kürzlich BEL 1 versucht, indem er einen (echten) 
Tensor vierter Stufe angibt, der bemerkenswerte 
Analogien zum Energie-Impuls-Tensor des MAXWELL-

Feldes aufweist und mit dessen Hilfe ein „Gravita-
tionsstrahlungszustand" definiert wird. 

Andererseits konnte vor kurzem gezeigt werden 2, 
daß die von einem zeitweilig nichtstationären System 
emittierte Gravitationsstrahlung eine nicht verschwin-
dende Gesamtenergie besitzt, die sich nicht durch 
Koordinatentransformationen zu Null machen läßt. 

1 L. BEL, C. R . A c a d . Sei. , Paris 247 , 1094 [ 1 9 5 8 ] ; 246 , 
3015 [ 1 9 5 8 ] . 

2 D . GEISSLER, A . PAPAPETROU U. H. TREDER, A n n . Phys., Lpz. 
(7) 2, 344 [ 1 9 5 9 ] . 

Obwohl hierbei die Gesamtenergie in der üblichen 
Weise, d. h. unter Verwendung des Pseudotensors t,/ 
definiert wird, ist das Ergebnis kovariant, was mit 
Hilfe der von WEYL 3 angegebenen integralen Form 
des allgemein-relativistischen Energie-Impuls-Satzes 
erreicht wird. 

Es wird daher von Interesse sein, den Tensor von 
BEL für das Strahlungsfeld eines während einer 
endlichen Zeit nichtstationären Systems explizit aus-
zurechnen und auf seinen physikalischen Gehalt zu 
untersuchen. Das soll im folgenden getan werden. 

Der „Energie-Impuls"-Tensor von BEL ist defi-
niert durch 4 

Taßuv = A gaß g uv — Maßuv ( 1 ) 

mit der Invarianten 

A = l Raß.uv ( 2 ) o 
und dem Tensor 

Maß uv = R-au Roßov + R3a°v R0ßo,u . ( 3 ) 

D a b e i ist Raßu>• der RiEMANNsche K r ü m m u n g s t e n s o r . 

Wir betrachten nun ein makroskopisches System, 
das (dauernd) in der Nähe des Koordinaten-
ursprungs lokalisiert ist und sich zu den Zeiten 
£ < 0 sowie t>T (T endlich) in einem stationären 
Zustand befindet, im Zeitintervall 0 ^ t T da-
gegen Gravitationsstrahlung aussendet. Das von die-
sem System erzeugte Gravitationsfeld2 hängt für 

3 H. WEYL, R a u m —Zei t —Mater ie , Springer-Verlag, Berlin 
1923, §§ 37, 38. 

4 a, / ? , . . . = 0, 1, 2, 3 ; i, j, k,... = 1, 2, 3 . 
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alle Zeiten t ^ > T nur in einem Gebiet von der Form 
einer Kugelschale S der Dicke c T, deren Radius 
sich nach Ergebnissen von L I C H N E R O W I C Z 5 mit Licht-
geschwindigkeit ausdehnt, von der Zeit ab, während 
es innerhalb und außerhalb der Kugelschale statio-
när ist. Das in S lokalisierte Strahlungsfeld ist für 
Zeiten T sicher schwach, da dann die Entfer-
nung r eines beliebigen Punktes in S vom System 
(im Ursprung) sehr groß gegen dessen räumliche 
Ausdehnung ist. 

Unter diesen Umständen haben die Feldgrößen 
g"v des Strahlungsfeldes in erster Näherung in 1/r 
die von F O C K 6 angegebene Form: 

0 0 ^ 1 [ 4 GM | 2 G Dr 

c- r c2 t 

9 -
2 G T\ir 

« U »Or C- T 

g ik = _ ftk + 2G Dik ,00 • 

(4) 

Dabei bedeutet G die NEWTONsche Gravitationskon-
stante, 

M = f ß ÜV (5) 

die Gesamtmasse und 

Drs = Drs{x) joxr^ dV, r = x°-r (6) 

die retardierten Trägheitsmomente der betrachteten 
Massenverteilung. Die Integrale in (5) und (6) 
sind über die Hyperebene x° = c t = const zu nehmen. 

Wir definieren nun einen Nullvektor7 

na = {ft0, n1} = |l, , 

na = {n0 , rii] = |l , — , 

und weiterhin die Größen 

Ua n2 = 0 

mit der Eigenschaft naK = 0. 

(7) 

(8) 

(9) 

Aus (6) ergibt sich dann wegen (7) für die Ablei-
tungen der Drs die Beziehung 

wobei die Punkte Ableitungen nach r (oder x0 ) be-
deuten. Damit und mit (8) bekommen wir aus (4) : 

kuy = g^ - r f = KN^Nvn Dmn + Buv (11) 

2 G mit der Abkürzung K = K(r) = (12) 

DrS, aß = Tla Uß DTS , (10) 

Die Größen K, N^ und BfiV sind in dem Sinne als 
konstant zu betrachten, als ihre Ableitungen nach Xs 

entweder verschwinden oder zu Termen höherer 
Ordnung in 1/r führen. Mit Hilfe von (10) erhal-
ten wir daher aus (11) 

,Qo = Kne n0N^ NvnFmn, ( 1 3 ) 

wobei noch Fmn = Dmn (14) 

gesetzt worden ist. 
Der RiEMANNsche Krümmungstensor lautet in er-

ster Näherung 

Raßixv = g (hafi,ßv + hßv,an — hav, ßu ~ hßu.av) , ( 1 5 ) 

hQ0 = gea - r\Qo = (g r\Q0 - rjQU rjov) k^ . ( 1 6 ) 

Man rechnet leicht nach, daß Raßuv wegen ( 7 ) , (9) 
und (13) in unserem Fall folgende Eigenschaften 
hat: 

n*Raß,uv = o , (17) 
na Rßypv + Tlß Ryauv + Tly RaßfiV — 0 . ( 1 8 ) 

Daher sollte nach BEL1 der durch (1) bis (3) defi-
nierte Tensor Taß^v die Form 

Taßfiv = — 4 o2 na riß Tlu Tlv (19) 
haben. 

Um Taßfxv explizit zu berechnen, brauchen wir zu-
nächst die Invariante A, Gl. ( 2 ) . Für sie gilt nach 
L A N C Z O S 8 (unter der Voraussetzung Raß = const • gaß) 
die Beziehung 

Raß/.v — 2 A guv. ( 2 0 ) 

Wenn nun (17) mit einem beliebigen Nullvektor n2 

(bei dem nicht sämtliche Komponenten verschwin-
den) erfüllt ist, folgt aus (20) durch Multiplikation 
mit nr: 

A = 0. (21) 
Für den zweiten Term in der Definition (1) von 
Taßuv erhält man aus (3 ) , ( 1 5 ) , ( 16 ) , (13) und (9) 

5 A . LICHNEROWICZ, Theor ies Relativistes de la Gravitation et 
de l 'Electromagnet isme, Masson & Cie. , Paris 1955, Kap i -
tel 2 u. 3. 

6 V . A . FOCK, Rev . M o d . Phys. 29 , 325 [ 1 9 5 7 ] ; vgl . auch 
D. GEISSLER, Z. Naturforschg. 1 4 a , 6 8 9 [ 1 9 5 9 ] , voran-
stehende Arbeit . Das Feld (4) erfüllt die Koordinaten-
bed ingung g.«" v = 0 . 

7 n 1 ist zunächst ein Nullvektor bezüglich MiNKowsKischer 
Metrik: ds2=r]/llv dz." dx'' (r/oo = 1 , ?70i = 0 , rjik= —dik) • 
Da aber bei den g,"1' stets nur in Termen cc r - 1 auftritt 
und wir Terme zweiter und höherer Ordnung in 1/r be i 
den g.«»' vernachlässigen, dürfen wir in unserer ersten 
Näherung n 3 als Nullvektor der a l lgemeinen Metr ik 
ds2 = g u v dxv dxv auffassen. 

8 C. LANCZOS, A n n . Math. 39, 842 [ 1 9 3 8 ] . 



nach einiger Rechnung 

MaßfiV=hK2 H naUßTluTlr , ( 2 2 ) 

H = Frs Frs - 1 (F r r ) 2 - 2 nr ns Frm Fsm (23) 
+ nrnsFrsFmm + l(nrnsFrsy-. 

Für Taßuv folgt dann aus (1 ) , (21) und (22) 
Taßuv = — \ K~ H Tla riß Tlu nv. ( 2 4 ) 

Man überzeugt sich leicht, daß H im Spezialfall 
/i1 = l , n2 = /i3 = 0 positiv (oder Null) ist. Wegen 
der Invarianz von H gegen räumliche Drehungen 
gilt daher allgemein 

H ^ 0 , (25) 

so daß Taßuv in der Tat die Form (19) mit 

e t " ( 2 6 ) 

besitzt. 
Mit Hilfe eines beliebigen zeitartigen Einheits-

vektors u" (uo u- = 1) werden der Vektor 

Po (u) = (<5" - UQ u a ) Taßuv vP u" uv ( 2 7 ) 

und der Skalar 
V{u) = -lTaßuvU*ufturu*^l 0 ( 2 8 ) 

definiert. Nach den Ergebnissen von BEL bestehen nun 
formale Analogien zwischen P ; und dem POYNTING-

Vektor sowie zwischen V und der Energiedichte des 
MAxwELL-Feldes. Insbesondere wird nach BEL ein 
(lokaler) „Gravitationsstrahlungszustand" durch 
P0 4= 0 charakterisiert. 

Wenden wir das nun auf das von uns betrachtete 
Feld an, und zwar — der Übersichtlichkeit halber — 
für i i ° = l , it® = 0 , so wird nach (27) , (24) und 
(12) 

P0 = 0 , Pi = T m o = - 2 G ] H n i * 0 . (29) 
c4 r-

Unser Feld gehört daher zu einem Strahlungszustand 
im Sinne der Definition von BEL. 

Um Pi als wirkliche Energiestromdichte auffassen 
zu können, müßte man einen konstanten Faktor a 
der Dimension g * c m 4 - s e c - 3 einführen: 

pi = a P-, [ = Energiestromdichte]. 

Damit ergäbe sich für die Energie dl, die pro sec 

9 A . EINSTEIN, S.B. Preuß. Akad. Wiss. , Berlin 1918, S. 1 5 4 ; 
L. LANDAU u. E. LIFSCHITZ, The Classical Theory of Fie lds , 
Add i son -Wes ley Press, Inc. , Cambr idge (Mass.) 1951, Ka-
pitel 11, § 12. Bei LANDAU-LIFSCHITZ ist Drs nicht wie hier 
[Gl . ( 6 ) ] , sondern durch Drs= f £>(3 x' x° - drs x™ xm) dV 
definiert. 

10 Drs ist ja im wesentlichen das Quadrupolmoment der Mas-
senverteilung. 

durch ein in der Richtung nr gelegenes Flächen-
element d/ = r2dro hindurchströmt, der Wert 

d / = a H dco 
c (dü) 

= 2 a [Drs Drs - | (Drr)2 - 2 nT ns Drm Dsm 
c 4 

+ nr ns Drs Dmm + \ (nr ns Drs)2] dco 

und für die gesamte pro sec abgestrahlte Energie 
dE/dt bekäme man daraus durch Integration über 
den vollen Raumwinkel: 

^ = 16 7t a - (3 Drs D' s - Drr Dss). (31) 
dt 15 c 4 v 7 

Die Formeln (30) und (31) sehen ganz ähnlich aus 
wie diejenigen, die man erhält, wenn man die ent-
sprechenden Größen auf die übliche Art, d. h. mit 
Hilfe des Pseudotensors t«", berechnet2 '9 , unter-
scheiden sich aber in zwei wesentlichen Punkten: 

1. Der konstante Faktor ist anders. Während sich 
bei der Rechnung mit t«*' zwanglos die richtige Di-
mension für dl und dE/dt ergibt, tritt in (30) und 
(31) der ad hoc eingeführte Dimensionsfaktor a 
auf. Dieser läßt sich durch keine Kombination der 
beiden Fundamentalkonstanten G und c allein dar-
stellen. 

2. Bei der Rechnung mit tu' treten dritte, in (30) 
und (31) dagegen vierte zeitliche Ableitungen der 
Drs auf. Nun charakterisieren die dritten Ableitun-
gen des Quadrupolmoments 10 — wie uns vom elek-
tromagnetischen Feld her vertraut ist — die Quadru-
polstrahlung; für die vierten Ableitungen der Drs 

bietet sich dagegen keine einfache physikalische 
Deutung an. 

Eine weitere Schwierigkeit für eine direkte Inter-
pretation der Ergebnisse von BEL besteht darin, daß 
der Tensor Taßuv von vierter Stufe ist, während 
man sonst nur Energie-Impuls-Tensoren zweiter 
Stufe kennt. 

Zusammenfassend läßt sich sagen: Die von BEL 
definierten Größen Taß,,v, P0 und V, die den großen 
Vorteil der Kovarianz besitzen, zeigen sehr interes-
sante Analogien zum Energie-Impuls-Tensor, zum 
POYNTING-Vektor bzw. zur Energiedichte des MAX-
WELL-Feldes. Die Anwendung der Ergebnisse von 
BEL auf den Fall des Strahlungsfeldes eines zeit-
weilig nichtstationären Systems führt indessen zu 
Schwierigkeiten bei der physikalischen Deutung und 
zeigt die formale Natur dieser Analogien. 

Ich danke Herrn Professor PAPAPETROU für die An-
regung zu dieser Arbeit. 


